Source code for nitransforms.nonlinear

# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Nonlinear transforms."""
import warnings
from functools import partial
import numpy as np

from nitransforms import io
from nitransforms.io.base import _ensure_image
from nitransforms.interp.bspline import grid_bspline_weights, _cubic_bspline
from nitransforms.base import (
    TransformBase,
    TransformError,
    ImageGrid,
    _as_homogeneous,
)
from scipy.ndimage import map_coordinates


[docs] class DenseFieldTransform(TransformBase): """Represents dense field (voxel-wise) transforms.""" __slots__ = ("_field", "_deltas") def __init__(self, field=None, is_deltas=True, reference=None): """ Create a dense field transform. Converting to a field of deformations is straightforward by just adding the corresponding displacement to the :math:`(x, y, z)` coordinates of each voxel. Numerically, deformation fields are less susceptible to rounding errors than displacements fields. SPM generally prefers deformations for that reason. Parameters ---------- field : :obj:`numpy.array_like` or :obj:`nibabel.SpatialImage` The field of deformations or displacements (*deltas*). If given as a data array, then the reference **must** be given. is_deltas : :obj:`bool` Whether this is a displacements (deltas) field (default), or deformations. reference : :obj:`ImageGrid` Defines the domain of the transform. If not provided, the domain is defined from the ``field`` input. Example ------- >>> DenseFieldTransform(test_dir / "someones_displacement_field.nii.gz") <DenseFieldTransform[3D] (57, 67, 56)> """ if field is None and reference is None: raise TransformError("DenseFieldTransforms require a spatial reference") super().__init__() if field is not None: field = _ensure_image(field) self._field = np.squeeze( np.asanyarray(field.dataobj) if hasattr(field, "dataobj") else field ) else: self._field = np.zeros((*reference.shape, reference.ndim), dtype="float32") is_deltas = True try: self.reference = ImageGrid(reference if reference is not None else field) except AttributeError: raise TransformError( "Field must be a spatial image if reference is not provided" if reference is None else "Reference is not a spatial image" ) if self._field.shape[-1] != self.ndim: raise TransformError( "The number of components of the field (%d) does not match " "the number of dimensions (%d)" % (self._field.shape[-1], self.ndim) ) if is_deltas: self._deltas = self._field # Convert from displacements (deltas) to deformations fields # (just add its origin to each delta vector) self._field += self.reference.ndcoords.T.reshape(self._field.shape) def __repr__(self): """Beautify the python representation.""" return f"<{self.__class__.__name__}[{self._field.shape[-1]}D] {self._field.shape[:3]}>" @property def ndim(self): """Get the dimensions of the transform.""" return self._field.ndim - 1
[docs] def map(self, x, inverse=False): r""" Apply the transformation to a list of physical coordinate points. .. math:: \mathbf{y} = \mathbf{x} + \Delta(\mathbf{x}), \label{eq:2}\tag{2} where :math:`\Delta(\mathbf{x})` is the value of the discrete field of displacements :math:`\Delta` interpolated at the location :math:`\mathbf{x}`. Parameters ---------- x : N x D :obj:`numpy.array_like` Input RAS+ coordinates (i.e., physical coordinates). inverse : :obj:`bool` If ``True``, apply the inverse transform :math:`x = f^{-1}(y)`. Returns ------- y : N x D :obj:`numpy.array_like` Transformed (mapped) RAS+ coordinates (i.e., physical coordinates). Examples -------- >>> xfm = DenseFieldTransform( ... test_dir / "someones_displacement_field.nii.gz", ... is_deltas=False, ... ) >>> xfm.map([-6.5, -36., -19.5]).tolist() [[0.0, -0.47516798973083496, 0.0]] >>> xfm.map([[-6.5, -36., -19.5], [-1., -41.5, -11.25]]).tolist() [[0.0, -0.47516798973083496, 0.0], [0.0, -0.538356602191925, 0.0]] >>> np.array_str( ... xfm.map([[-6.7, -36.3, -19.2], [-1., -41.5, -11.25]]), ... precision=3, ... suppress_small=True, ... ) '[[ 0. -0.482 0. ]\n [ 0. -0.538 0. ]]' >>> xfm = DenseFieldTransform( ... test_dir / "someones_displacement_field.nii.gz", ... is_deltas=True, ... ) >>> xfm.map([[-6.5, -36., -19.5], [-1., -41.5, -11.25]]).tolist() [[-6.5, -36.47516632080078, -19.5], [-1.0, -42.03835678100586, -11.25]] >>> np.array_str( ... xfm.map([[-6.7, -36.3, -19.2], [-1., -41.5, -11.25]]), ... precision=3, ... suppress_small=True, ... ) '[[ -6.7 -36.782 -19.2 ]\n [ -1. -42.038 -11.25 ]]' """ if inverse is True: raise NotImplementedError ijk = self.reference.index(x) indexes = np.round(ijk).astype("int") if np.all(np.abs(ijk - indexes) < 1e-3): indexes = tuple(tuple(i) for i in indexes) return self._field[indexes] new_map = np.vstack( tuple( map_coordinates( self._field[..., i], ijk, order=3, mode="constant", cval=np.nan, prefilter=True, ) for i in range(self.reference.ndim) ) ).T # Set NaN values back to the original coordinates value = no displacement new_map[np.isnan(new_map)] = np.array(x)[np.isnan(new_map)] return new_map
def __matmul__(self, b): """ Compose with a transform on the right. Examples -------- >>> deff = DenseFieldTransform( ... test_dir / "someones_displacement_field.nii.gz", ... is_deltas=False, ... ) >>> deff2 = deff @ TransformBase() >>> deff == deff2 True >>> disp = DenseFieldTransform(test_dir / "someones_displacement_field.nii.gz") >>> disp2 = disp @ TransformBase() >>> disp == disp2 True """ retval = b.map(self._field.reshape((-1, self._field.shape[-1]))).reshape( self._field.shape ) return DenseFieldTransform(retval, is_deltas=False, reference=self.reference) def __eq__(self, other): """ Overload equals operator. Examples -------- >>> xfm1 = DenseFieldTransform(test_dir / "someones_displacement_field.nii.gz") >>> xfm2 = DenseFieldTransform(test_dir / "someones_displacement_field.nii.gz") >>> xfm1 == xfm2 True """ _eq = np.array_equal(self._field, other._field) if _eq and self._reference != other._reference: warnings.warn("Fields are equal, but references do not match.") return _eq @classmethod def from_filename(cls, filename, fmt="X5"): _factory = { "afni": io.afni.AFNIDisplacementsField, "itk": io.itk.ITKDisplacementsField, "fsl": io.fsl.FSLDisplacementsField, } if fmt not in _factory: raise NotImplementedError(f"Unsupported format <{fmt}>") return cls(_factory[fmt].from_filename(filename))
load = DenseFieldTransform.from_filename
[docs] class BSplineFieldTransform(TransformBase): """Represent a nonlinear transform parameterized by BSpline basis.""" __slots__ = ["_coeffs", "_knots", "_weights", "_order", "_moving"] def __init__(self, coefficients, reference=None, order=3): """Create a smooth deformation field using B-Spline basis.""" super().__init__() self._order = order coefficients = _ensure_image(coefficients) self._coeffs = np.asanyarray(coefficients.dataobj) self._knots = ImageGrid(coefficients) self._weights = None if reference is not None: self.reference = reference if coefficients.shape[-1] != self.reference.ndim: raise TransformError( "Number of components of the coefficients does " "not match the number of dimensions" ) @property def ndim(self): """Get the dimensions of the transform.""" return self._coeffs.ndim - 1
[docs] def to_field(self, reference=None, dtype="float32"): """Generate a displacements deformation field from this B-Spline field.""" _ref = ( self.reference if reference is None else ImageGrid(_ensure_image(reference)) ) if _ref is None: raise TransformError("A reference must be defined") if self._weights is None: self._weights = grid_bspline_weights(_ref, self._knots) field = np.zeros((_ref.npoints, self.ndim)) for d in range(self.ndim): # 1 x Nvox : (1 x K) @ (K x Nvox) field[:, d] = self._coeffs[..., d].reshape(-1) @ self._weights return DenseFieldTransform( field.astype(dtype).reshape(*_ref.shape, -1), reference=_ref )
[docs] def map(self, x, inverse=False): r""" Apply the transformation to a list of physical coordinate points. .. math:: \mathbf{y} = \mathbf{x} + \Psi^3(\mathbf{k}, \mathbf{x}), \label{eq:1}\tag{1} Parameters ---------- x : N x D numpy.ndarray Input RAS+ coordinates (i.e., physical coordinates). inverse : bool If ``True``, apply the inverse transform :math:`x = f^{-1}(y)`. Returns ------- y : N x D numpy.ndarray Transformed (mapped) RAS+ coordinates (i.e., physical coordinates). Examples -------- >>> xfm = BSplineFieldTransform(test_dir / "someones_bspline_coefficients.nii.gz") >>> xfm.reference = test_dir / "someones_anatomy.nii.gz" >>> xfm.map([-6.5, -36., -19.5]).tolist() # doctest: +ELLIPSIS [[-6.5, -31.476097418406..., -19.5]] >>> xfm.map([[-6.5, -36., -19.5], [-1., -41.5, -11.25]]).tolist() # doctest: +ELLIPSIS [[-6.5, -31.4760974184..., -19.5], [-1.0, -3.807267537712..., -11.25]] """ vfunc = partial( _map_xyz, reference=self.reference, knots=self._knots, coeffs=self._coeffs, ) return np.array([vfunc(_x).tolist() for _x in np.atleast_2d(x)])
def _map_xyz(x, reference, knots, coeffs): """Apply the transformation to just one coordinate.""" ndim = len(x) # Calculate the index coordinates of the point in the B-Spline grid ijk = (knots.inverse @ _as_homogeneous(x).squeeze())[:ndim] # Determine the window within distance 2.0 (where the B-Spline is nonzero) # Probably this will change if the order of the B-Spline is different w_start, w_end = np.ceil(ijk - 2).astype(int), np.floor(ijk + 2).astype(int) # Generate a grid of indexes corresponding to the window nonzero_knots = tuple( [np.arange(start, end + 1) for start, end in zip(w_start, w_end)] ) nonzero_knots = tuple(np.meshgrid(*nonzero_knots, indexing="ij")) window = np.array(nonzero_knots).reshape((ndim, -1)) # Calculate the distance of the location w.r.t. to all voxels in window distance = window.T - ijk # Since this is a grid, distance only takes a few float values unique_d, indices = np.unique(distance.reshape(-1), return_inverse=True) # Calculate the B-Spline weight corresponding to the distance. # Then multiply the three weights of each knot (tensor-product B-Spline) tensor_bspline = _cubic_bspline(unique_d)[indices].reshape(distance.shape).prod(1) # Extract the values of the coefficients in the window coeffs = coeffs[nonzero_knots].reshape((-1, ndim)) # Inference: the displacement is the product of coefficients x tensor-product B-Splines return x + coeffs.T @ tensor_bspline