# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Interpolate with 3D tensor-product B-Spline basis."""
import numpy as np
import nibabel as nb
from scipy.sparse import csr_matrix, kron
def _cubic_bspline(d, order=3):
"""Evaluate the cubic bspline at distance d from the center."""
if order != 3:
raise NotImplementedError
return np.piecewise(
d,
[d < 1.0, d >= 1.0],
[
lambda d: (4.0 - 6.0 * d ** 2 + 3.0 * d ** 3) / 6.0,
lambda d: (2.0 - d) ** 3 / 6.0,
],
)
[docs]
def grid_bspline_weights(target_grid, ctrl_grid):
r"""
Evaluate tensor-product B-Spline weights on a grid.
For each of the :math:`N` input locations :math:`\mathbf{x} = (x_i, x_j, x_k)`
and :math:`K` control points or *knots* :math:`\mathbf{c} =(c_i, c_j, c_k)`,
the tensor-product cubic B-Spline kernel weights are calculated:
.. math::
\Psi^3(\mathbf{x}, \mathbf{c}) =
\beta^3(x_i - c_i) \cdot \beta^3(x_j - c_j) \cdot \beta^3(x_k - c_k),
\label{eq:bspline_weights}\tag{1}
where each :math:`\beta^3` represents the cubic B-Spline for one dimension.
The 1D B-Spline kernel implementation uses :obj:`numpy.piecewise`, and is based on the
closed-form given by Eq. (6) of [Unser1999]_.
By iterating over dimensions, the data samples that fall outside of the compact
support of the tensor-product kernel associated to each control point can be filtered
out and dismissed to lighten computation.
Finally, the resulting weights matrix :math:`\Psi^3(\mathbf{k}, \mathbf{s})`
can be easily identified in Eq. :math:`\eqref{eq:1}` and used as the design matrix
for approximation of data.
Parameters
----------
target_grid : :obj:`~nitransforms.base.ImageGrid` or :obj:`nibabel.spatialimages`
Regular grid of :math:`N` locations at which tensor B-Spline basis will be evaluated.
ctrl_grid : :obj:`~nitransforms.base.ImageGrid` or :obj:`nibabel.spatialimages`
Regular grid of :math:`K` control points (knot) where B-Spline basis are defined.
Returns
-------
weights : :obj:`numpy.ndarray` (:math:`K \times N`)
A sparse matrix of interpolating weights :math:`\Psi^3(\mathbf{k}, \mathbf{s})`
for the *N* voxels of the target EPI, for each of the total *K* knots.
This sparse matrix can be directly used as design matrix for the fitting
step of approximation/extrapolation.
"""
shape = target_grid.shape[:3]
ctrl_sp = nb.affines.voxel_sizes(ctrl_grid.affine)[:3]
ras2ijk = np.linalg.inv(ctrl_grid.affine)
# IJK index in the control point image of the first index in the target image
origin = nb.affines.apply_affine(ras2ijk, [tuple(target_grid.affine[:3, 3])])[0]
wd = []
for i, (o, n, sp) in enumerate(
zip(origin, shape, nb.affines.voxel_sizes(target_grid.affine)[:3])
):
# Locations of voxels in target image in control point image
locations = np.arange(0, n, dtype="float16") * sp / ctrl_sp[i] + o
knots = np.arange(0, ctrl_grid.shape[i], dtype="float16")
distance = np.abs(locations[np.newaxis, ...] - knots[..., np.newaxis])
within_support = distance < 2.0
d_vals, d_idxs = np.unique(distance[within_support], return_inverse=True)
bs_w = _cubic_bspline(d_vals)
weights = np.zeros_like(distance, dtype="float32")
weights[within_support] = bs_w[d_idxs]
wd.append(csr_matrix(weights))
return kron(kron(wd[0], wd[1]), wd[2])