Source code for nitransforms.interp.bspline

# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Interpolate with 3D tensor-product B-Spline basis."""
import numpy as np
import nibabel as nb
from scipy.sparse import csr_matrix, kron


def _cubic_bspline(d, order=3):
    """Evaluate the cubic bspline at distance d from the center."""
    if order != 3:
        raise NotImplementedError

    return np.piecewise(
        d,
        [d < 1.0, d >= 1.0],
        [
            lambda d: (4.0 - 6.0 * d ** 2 + 3.0 * d ** 3) / 6.0,
            lambda d: (2.0 - d) ** 3 / 6.0,
        ],
    )


[docs]def grid_bspline_weights(target_grid, ctrl_grid): r""" Evaluate tensor-product B-Spline weights on a grid. For each of the :math:`N` input locations :math:`\mathbf{x} = (x_i, x_j, x_k)` and :math:`K` control points or *knots* :math:`\mathbf{c} =(c_i, c_j, c_k)`, the tensor-product cubic B-Spline kernel weights are calculated: .. math:: \Psi^3(\mathbf{x}, \mathbf{c}) = \beta^3(x_i - c_i) \cdot \beta^3(x_j - c_j) \cdot \beta^3(x_k - c_k), \label{eq:bspline_weights}\tag{1} where each :math:`\beta^3` represents the cubic B-Spline for one dimension. The 1D B-Spline kernel implementation uses :obj:`numpy.piecewise`, and is based on the closed-form given by Eq. (6) of [Unser1999]_. By iterating over dimensions, the data samples that fall outside of the compact support of the tensor-product kernel associated to each control point can be filtered out and dismissed to lighten computation. Finally, the resulting weights matrix :math:`\Psi^3(\mathbf{k}, \mathbf{s})` can be easily identified in Eq. :math:`\eqref{eq:1}` and used as the design matrix for approximation of data. Parameters ---------- target_grid : :obj:`~nitransforms.base.ImageGrid` or :obj:`nibabel.spatialimages` Regular grid of :math:`N` locations at which tensor B-Spline basis will be evaluated. ctrl_grid : :obj:`~nitransforms.base.ImageGrid` or :obj:`nibabel.spatialimages` Regular grid of :math:`K` control points (knot) where B-Spline basis are defined. Returns ------- weights : :obj:`numpy.ndarray` (:math:`K \times N`) A sparse matrix of interpolating weights :math:`\Psi^3(\mathbf{k}, \mathbf{s})` for the *N* voxels of the target EPI, for each of the total *K* knots. This sparse matrix can be directly used as design matrix for the fitting step of approximation/extrapolation. """ shape = target_grid.shape[:3] ctrl_sp = nb.affines.voxel_sizes(ctrl_grid.affine)[:3] ras2ijk = np.linalg.inv(ctrl_grid.affine) # IJK index in the control point image of the first index in the target image origin = nb.affines.apply_affine(ras2ijk, [tuple(target_grid.affine[:3, 3])])[0] wd = [] for i, (o, n, sp) in enumerate( zip(origin, shape, nb.affines.voxel_sizes(target_grid.affine)[:3]) ): # Locations of voxels in target image in control point image locations = np.arange(0, n, dtype="float16") * sp / ctrl_sp[i] + o knots = np.arange(0, ctrl_grid.shape[i], dtype="float16") distance = np.abs(locations[np.newaxis, ...] - knots[..., np.newaxis]) within_support = distance < 2.0 d_vals, d_idxs = np.unique(distance[within_support], return_inverse=True) bs_w = _cubic_bspline(d_vals) weights = np.zeros_like(distance, dtype="float32") weights[within_support] = bs_w[d_idxs] wd.append(csr_matrix(weights)) return kron(kron(wd[0], wd[1]), wd[2])